
Superuniversal spectral dimension for dilute branched polymers?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 L165

(http://iopscience.iop.org/0305-4470/17/4/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) L165-Ll71. Printed in Great Britain 

LElTER TO THE EDITOR 

Superuniversal spectral dimension for dilute branched 
polymers? 

Muhammad Sahimi and Gary R Jerauld 
Department of Chemical Engineering and Materials Science, University of Minnesota, 
Minneapolis, Minnesota 55455, USA 

Received 9 November 1983 

Abstract. We introduce the problem of random walks on lattice animals (dilute branched 
polymers), and calculate the spectral dimension d, of animals in two and three dimensions 
by using a two-parameter position-space renormalisation group method. This problem, 
which is a generalisation of the problem of ‘the ant in the labyrinth’, has been independently 
proposed and investigated by Wilke et al. The spectral dimension is given by d,= 2d,/d, 
where d, is the fractal dimension of the lattice animal, and d, the fractal dimension of the 
random walk on the lattice animal. Our results indicate that d, may be a superuniversal 
quantity, i.e. its value is independent of dimension. Moreover, we find d, to be close to $ 
which is the spectral dimension of the largest percolation cluster at the percolation threshold 
pc as conjectured by Alexander and Orbach. Since both lattice animals and the largest 
percolation cluster at pc have a homogeneous inferior structure, our results suggest that the 
spectral dimension of all such fractals may equal $. 

The problem of ‘the ant in the labyrinth’ was introduced by de Gennes (1976) in an 
attempt to probe the structure of percolation clusters (for a review see Mitescu and 
Roussenq (1983)). In this problem one considers the motion of a particle (‘the ant’) 
which performs a P6lya random walk on the occupied sites or bonds of a percolation 
network (‘the labyrinth’); a P6lya walk is an unbiased, nearest-neighbour random 
walk. For such a walk, the root-mean-squared displacement R of the random walker 
is related to the number of steps N, of the walk through the relation 

R - N ?  

where v, is a constant. A fractal dimension d, for the random walk (RW) is defined 
by d, = 1/ v,. Above the percolation threshold pc and at very long times, d, = 2 at 
all dimensions, whereas below pc there are only finite clusters of occupied sites or 
bonds and thus R remains finite. At pc the largest cluster is a fractal object whose 
radius of gyration 6, is related to the ‘mass’ N of the fractal through the fractal 
dimension 

tp- (2) 
The fractal dimension d ,  is a dimensional-dependent quantity whose exact value is 
not known at any dimension. However, as a result of the den Nils-Pearson-Nienhuis 
et a1 conjectures (den Nijs 1979, Pearson 1980, Nienhuis et al 1980) there is growing 
evidence that d p = % =  1.896 is possibly exact in two dimensions ( 2 ~ )  (see the review 
by Sahimi (1983)). For RWS on percolation clusters slightly above pc the fractal 
dimension d, remains unchanged if R >> tp. However, if R << tP, then d ,  takes values 
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that depend on the dimensionality of the system; no exact results have been found 
for d,. 

Alexander and Orbach (1  982) made a remarkable discovery. They defined a new 
fractal dimension d ,  by the relation 

which they called fracton or spectral dimension and conjectured, based on numerical 
evidence, that d,  is independent of dimension. They proposed that 

Recent numerical simulations (Derrida and Vannimenus 1982, Derrida et a1 1983, 
Sahimi et al 1983, Pandey and Stauffer 1983, Mitescu and Musolf 1983) strongly 
supported their conjecture. 

The Alexander-Orbach (AO) conjecture motivates an interesting question: is there 
any other fractal whose spectral dimension d ,  is a superuniversal quantity, i.e. is 
independent of the details and dimensionality of the system? If there is such a fractal, 
one is motivated to know whether d, of such a fractal is the same as that of the largest 
percolation cluster at pc. In this letter we introduce the problem of RWS on lattice 
animals, i.e. connected clusters of sites or bonds in a d-dimensional lattice. This is a 
generalisation of ‘the ant in the labyrinth’ problem and has been independently 
proposed and investigated by Wilke et a1 (1984). The problem is interesting, because 
lattice animals are fractals with homogeneous interior structure and thus one may 
calculate their spectral dimension. Moreover, as a very accurate estimate of the fractal 
dimension d, of animals in 2 ~ ,  d, -1 .56  (Derrida and DeSeze 1982) and its exact 
values in 3 ~ ,  d, = 2 (Parisi and Sourlas 1981) and 4 ~ ,  d,  =? (Dhar 1983) are known, 
the spectral dimension d, of lattice animals may be determined to a high degree of 
accuracy. In this letter we report some preliminary calculations of d, for lattice animals 
in 2~ and 3 ~ ,  using a two-parameter position-space renormalisation group (PSRG) 
method, which indicate that the spectral dimension d ,  of lattice animals may be a 
superuniversal quantity, whose value is close to and possibly the same as that of the 
largest percolation cluster at p,. In a future paper we will report results of Monte 
Carlo simulations of the problem of RWS on lattice animals. Because the statistics of 
branched polymers in the dilute limit in a good solvent are in the same universality 
class as those of lattice animals (Lubensky and Isaacson 1979), our results suggest a 
superuniversal spectral dimension for dilute branched polymers. 

Before proceeding to describe our PSRG treatment of the problem, we point out 
that at very long times one expects that R - t,, where 5, is the radius of the animal. 
The RW is diffusive in this regime. However, for shorter (intermediate) times we expect 
to have R << 5, and thus a fractal dimension d ,  should describe the RW on the animal 
in this case. We also note that the upper critical dimension d,  of lattice animals is 
d, = 8 (Lubensky and Isaacson 1979). At d,  the fractal dimension d,  of animals is 
d,  = 4, the same as that of the largest percolation cluster at pc at d ,  (percolation) = 6 .  
Although we do not have any rigorous proof, it is reasonable to assume that d ,  of a 
RW on lattice animals at d,  = 8 is the same as that of the walk at pc at d, (percolation) = 6 ,  
i.e. d , = 6 .  Therefore the mean-field value of the spectral dimension of animals is 
presumably 4, the same as the AO conjecture. 

To treat the present problem with a PSRG method, one has to develop a PSRG 
method for lattice animals. To this end we use the PSRG method of Family (1980, 
1983) for lattice animals. Since in the lattice animal problem one is interested in the 
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statistics of all distinct clusters starting at the origin of an infinite lattice, one only 
rescales a renormalisation cell if it contains a single cluster originating at  a fixed origin 
on the cell. In addition, one has to develop connectivity rules for rescaling an animal 
within a cell into a rescaled cell. We consider site animals, i.e. connected clusters of 
sites originating at a single site. For these animals we define several connectivity rules 
(see Family 1983, Reynolds et a1 1978). In rule ro a cell is rescaled to an occupied 
site if it contains a single connected cluster that, starting from a fixed origin (which 
for all rules we choose to be the lower-left corner of the cell, as shown in figure l ) ,  
extends in any of the d possible directions across the cell in d dimensions; whereas 
rule rl requires a site animal to span in one specific direction. Finally rule r2 requires 
a site animal to span in all directions. We consider all these rules and expect them 
to converge to the same results in the large cell limit. 

II, 
A 

Figure 1. A b = 2 cell that was. used in the PSRG calculations of lattice animals and RWS 
on lattice animals. A denotes the origin of the animals and the RWS. The full circles are the 
sites of the animals. 

To construct a renormalisation group (RG) transformation for site animals we first 
assign a fugacity S to each site in an animal and then determine the generating function 
(Family 1983) 

Gi(S, b )  = 1 Ci(n)S”, ( 5 )  
n 

where Ci( n) is the total number of site animals with n sites spanning according to the 
rule ri ( i  = 0 ,  1 ,2 )  on a cell of linear dimension b. The RG transformation is defined 
by requiring that the generating function for the spanning animals is invariant on the 
original and rescaled levels. This leads us to an equation for the renormalised fugacity 
S’ on the rescaled cell; for the rule ri S’ is given by (Family 1983) 

S’ = Gi(S, b ) .  ( 6 )  

The fractal dimension d, of animals is given by d, =In A,/ln b, where A, = (aS’/aS),* 
is the eigenvalue of the linearised RG transformation. S* is the fixed point of the RG 
transformation, i.e. the solution of the equation S* = Gi(S*, b). 

After generating a spanning animal on the cell, a walker (‘the ant’) performs a RW 

on the spanning animal, starting from the origin of the animal. Of course the origin 
of the RW can be chosen arbitrarily. At each site of the animal there are j ways to 
take the next step of the RW with equal probabilities. We thus assign a fugacity 
W = W J j  to each step of the RW where W,  is the total fugacity of the j ways of 
performing the RW (Nakanishi and Family 1984). The RW is considered spanning if 
the walker spans the cell in any of the possible directions. Because the RW can be 
performed along only those bonds whose end sites are part of the spanning animal, 
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the recursion relation for W', the renormalised RW fugacity, is given by 

S'2w'= C S "  C D i ( m ) W m  . 
n (U ) (7) 

The term S" reflects the fact that a spanning animal of n sites has a fugacity S". D , ( m )  
is the number of spanning RWS of m steps for the rule r,. However, there are an 
infinite number of spanning RWS on any spanning animal; thus (7) cannot be evaluated 
exactly. But from (1) we see that only those spanning RWS contribute significantly to 
(7) at the fixed point W* whose number of steps m satisfies m C Rdw. This procedure 
has been used very recently for some RW problems with considerable success (Gould 
et a1 1983, Sahimi and Jerauld 1983a, b, Sahimi et a1 1984). Of course we do not 
know the value of d, for RWS on lattice animals. But from the obvious inequalities 
d,> 1 and d,> d, we obtain 

(8) 

Thus 1.56 < d, < 3.12 in 2~ and the mid-point of this interval is about 2.3. Thus we 
enumerated only those walks whose number of steps m satisfied m S R2.3 ,  where R 
is the end-to-end length of the spanning walk on the cell. For the cells used in this 
paper, R = [(d - 1)( b - 1)2 + b2]1'2, where d is the dimension and b the linear dimension 
of the cell. 

Of course, we expect that by using larger and larger cells the results with any rule 
for the enumeration of spanning RWS converge to the same result. The mid-point of 
the interval was chosen to facilitate the convergence of the small cell results to 
asymptotic ones. To check the accuracy of the procedure we also enumerated shorter 
and longer spanning RWS. The results did not change significantly, which is expected 
since the fixed point W* is a small number in the interval (0 , l ) .  For example, if we 
enumerate walks of up to m steps with m S R 2  in 2 ~ ,  after extrapolating the results 
(see below) they differ by about 6% from the results with m s R2.3 . Thus we believe 
that the results are representative. In 3~ 2<d ,<4  and therefore we enumerated 
walks of up to m S R 3  steps. The recursion relations for S' and W' were determined 
for cells of size b = 2-4 on a square lattice using rules ro, r l  and r2.  In 3~ it is not 
possible to calculate, in closed form, the recursion relation for S' for cells of linear 
dimension b > 2. The fractal dimension of RWS is given by d, = In A,/ln 6, where the 
eigenvalue A, is given by A, = (a W'/d W )  WL,S*.  

The results for W*, S* ,  d, and d, with rules r0, rl and r2 are given in table 1 for 
RWS on 2~ lattice animals. Our results on the b = 2 cell with different rules in 3~ are 
presented in table 2. In many previous PSRG studies (Reynolds et a1 1980, Eschbach 
et a1 1981, Family and Reynolds 1981) the finite b results were extrapolated to b+oo 
by the following equation: 

d, < d, < 2d,. 

d,(b) =d,+al( ln  b)-'+a2(ln b)-2, (9) 

where a l  and a 2  are some constants. However, the results of Stauffer (1981) and 
Tsallis (1982) indicate that a better (more accurate) method of extrapolating the finite 
b results is by using the equation 

d,(b) = d,+ ( c1 + ~ ~ b - ' ~ - ) ( l n  b)- ' ,  (10) 

where c1 and c2 are again some constants. Here is a correction-to-scaling exponent 
which is believed to be universal. For lattice animals in 2~ Guttman (1982) obtained 
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TaMe 1. The fixed points S* and W* and the fractal dimensions d, and dw for lattice 
animals and RWS on lattice animals on a square lattice, using (a) rule r,, (b)  rule rI, and 
( c )  rule r,. b is the linear dimension of the cell. 

( a )  Rule r,. 

b S* W* 4 dW 

2 0.3247 0.7316 1.254 1.694 
3 0.3330 0.8674 1.344 1.951 
4 0.3236 0.9183 1.387 2.022 

( b )  Rule r l .  

b S* W* 4 d W  

2 0.4142 0.6998 1.409 1.654 
3 0.3754 0.8338 1.43 1 1.875 
4 0.3487 0.8962 1.447 1.946 

( c )  Rule r2. 

b S* W* da d W  

2 0.5321 0.9112 1.655 1.901 
3 0.4363 0.8918 1.603 2.045 
4 0.3869 0.9231 1.581 2.074 

TaMe 2. The fixed points S* and W* and the fractal dimensions da and dw for lattice 
animals and RWS on lattice animals on a simple cubic lattice using rules r,, rI and r,. The 
results are for a b = 2 cell. 

Rule S* W* 4 dW 

r0 0.1824 0.6496 1.404 1.820 
rl 0.2452 0.5926 1.722 1.675 
r, 0.3280 0.7889 2.182 2.354 

SZ = 0.87 f 0.06, whereas more recently Margolina et a1 (1983) obtained a= 
0.86*0.05. By using the data of table 1 and equation (9) we found d,= 1.60, 1.54 
and 1.48 for rules r,, rl and r2 respectively. We took 0 to be 0.85 and used (10) to 
obtain d,= 1.637,1.575 and 1.466 for rules ro, rl and r2 respectively. The latter results 
are precisely 2.2% different from the former ones which shows that (9) is reliable, 
although (10) has a better theoretical basis. If we take i2 to be 0.8, the results virtually 
do not change. Since the value of SZ for the RW problem is not known, we used (9) 
to extrapolate our results for d,. We obtained d, = 2.20, 2.18 and 2.08 for rules to, 
rl and r2 respectively. Because asymptotically these rules are expected to converge 
to the same result, we combine the three sets of data and find the value of d,(d,) by 
finding the value of the intercept which gives the best overall fit to the three sets of 
data simultaneously. From this procedure we find d,= 2.15 and d,= 1.53 (by using 
(9)) and d,- 1.55 (by using (10)). The results for d, agree will with the estimate of 
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d, given by Derrida and DeSeze (1982), da= 1.56. Thus the spectral dimension 
d,= 2d,/d, of lattice animals (dilute branched polymers) in 2~ is found to be about 

d,( d = 2) = 1.42. (11) 

This is only 6.5% larger than d,=$ of the AO conjecture for the largest percolation 
cluster at pc. Moreover, if we use d,- 2.20 for rule ro we obtain d,= 1.39. In 3~ our 
results are not very accurate since we used only a b = 2 cell. However, from table 1 
it appears that the trends in the results with rules to, rl and rz for d, and d, are 
consistent with each other, i.e. a large value of d, (e.g. d, - 1.6 with rule ro) also means 
a large value of d, (e.g. d ,  - 2.20 with rule ro).  It is possible to obtain rough estimates 
of d, and d, in 3~ by using our PSRG results in 2~ and 3 ~ .  Let us define f (  b )  = d,/d,(  b ) ,  
where d ,  is the correct value of this exponent and d, (b)  is its value obtained from 
PSRG calculations with a cell of size b using rule ri ( i  = 0, 1,2).  From table 2 it appears 
that the results with rule rz are more accurate with a small cell in 3 ~ ;  this is also true 
of the results in 2 ~ .  Thus if we use the results of rule rz in 2~ we obtain f(2) = 0.93. 
If we assume that f ( b )  is independent of dimensions we obtain d,(d=3)- 
0.93 X 2.182 = 2.03, where we used the result with rule r, in 3 ~ .  Our estimate d,=  2.03 
is in fact very close to the exact result d,=2  (Parisi and Sourlas 1981); thus this 
procedure seems to be reliable. If we use the same procedure for d, we obtain the 
estimate d ,  = 2.66 in 3 ~ .  Thus a rough estimate of the spectral dimension d, of lattice 
animals in 3~ is given by 

d, (d  = 3) - 1.52. (12) 

Despite several approximations made in obtaining this estimate, it differs by only about 
7% from our estimate of d,  in 2 ~ .  We believe if one uses larger renormalisation cells, 
the agreement will improve. Wilke et a1 (1984) have performed Monte Carlo simula- 
tions and have obtained d,(d = 2) = 2.6 f 0.3 and d,(d = 3) = 3.4 f 0.4, which then 
result in d,(d=2)= 1.250.15 and d,(d=3)= 1.18*0.14, in reasonable agreement 
with our results. 

In summary, we have introduced and investigated the problem of RWS on lattice 
animals. By developing a two-parameter PSRG transformation we estimated the spectral 
dimension d,  of lattice animals (dilute branched polymers) in 2~ and 3 ~ .  Although 
we only used small renormalisation cells, our results for d,  in both 2~ and 3~ agreed 
with each other and were in reasonable agreement with the value d,  =: conjectured 
by Alexander and Orbach (1982) for the largest percolation cluster at pc.  Moreover, 
the value of d, for lattice animals at the upper critical dimensionality d, = 8 appears 
to be exactly $. These results suggest that the spectral dimension of lattice animals 
(dilute branched polymers) is a superuniversal quantity and is the same as that of the 
largest percolation clusters at p,. Thus although percolation clusters and lattice animals 
belong to two different universality classes (Lubensky and Isaacson 1979), they may 
be related to each other through the concept of spectral dimension. We also note that 
if the spectral dimension of lattice animals is indeed superuniversal and equal to 4, a 
Flory approximation for d, can be obtained. By using the Flory approximation for 
d, (Isaacson and Lubensky 1980, Daoud and Joanny 198l), d,  = (2d+4)/5,  we obtain 
a Flory approximation for d,: 

dW=(3d+6) /5 .  (13) 
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Our result may also indicate that the spectral dimension for all fractals which have 
homogeneous interior structure may be the same and equal $. We will report the results 
of our Monte Carlo simulations in a future paper. 

It is our pleasure to thank the referee for many useful sbggestions and kind comments 
and for sending us a copy of the paper of Wilke et a1 (1984). This work was supported 
by the US Department of Energy. 
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